Section A

Q1 Which of the following least resembles an ideal gas?
A ammonia
B helium
C hydrogen
D trichloromethane

Q2 The density of ice is $1.00 \mathrm{~g} \mathrm{~cm}-3$.
What is the volume of steam produced when 1.00 cm 3 of ice is heated to $323^{\circ} \mathrm{C}(596 \mathrm{~K})$ at a pressure of one atmosphere (101 kPa)?
[1 mol of a gas occupies $24.0 \mathrm{dm}_{3}$ at $25{ }^{\circ} \mathrm{C}(298 \mathrm{~K})$ and one atmosphere.]
A 0.267 dm3
B $1.33 \mathrm{dm}_{3}$
C $2.67 \mathrm{dm}_{3}$
D 48.0 dm3

Q3 Which diagram correctly describes the behaviour of a fixed mass of an ideal gas? (T is measured in K.)
A
B
C
D

Q4 Use of the Data Booklet is relevant to this question.
The gas laws can be summarised in the ideal gas equation.

$$
\mathrm{pV}=\mathrm{nRT}
$$

0.96 g of oxygen gas is contained in a glass vessel of volume 7000 cm 3 at a temperature of $30^{\circ} \mathrm{C}$. What is the pressure in the vessel?
A 1.1 kPa
B 2.1 kPa
C 10.8 kPa
D 21.6 kPa

Q5 Which gas is likely to deviate most from ideal gas behaviour?
A HCl
B He
CCH_{4}
D N2

Q6 For an ideal gas, the plot of pV against p is a straight line. For a real gas, such a plot shows a deviation from ideal behaviour. The plots of $p V$ against p for three real gases are shown below. The gases represented are ammonia, hydrogen and nitrogen.
What are the identities of the gases X, Y and Z ?

Q7 Which of the following would behave most like an ideal gas at room temperature?
A carbon dioxide
B helium
C hydrogen
D nitrogen

Q8 Flask X contains $5 \mathrm{dm}_{3}$ of helium at 12 kPa pressure and flask Y contains $10 \mathrm{dm}_{3}$ of neon at 6 kPa pressure.
If the flasks are connected at constant temperature, what is the final pressure?
A 8 kPa
B 9 kPa
C 10 kPa
D 11 kPa

Q9 Use of the Data Booklet is relevant to this question.
The volume of a sample of ammonia is measured at a temperature of $60^{\circ} \mathrm{C}$ and a pressure of 103 kPa . The volume measured is $5.37 \times 10-3 \mathrm{~m}$.
What is the mass of the sample of ammonia, given to two significant figures?
A 0.00019 g
B 0.0034 g
C 0.19 g
D 3.4 g

Section B

A	B	C	D
$\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ are correct	$\mathbf{1}$ and $\mathbf{2}$ only are correct	$\mathbf{2}$ and $\mathbf{3}$ only are correct	$\mathbf{1}$ only is correct

Q10 An ideal gas obeys the gas laws under all conditions of temperature and pressure.
Which of the following are true for an ideal gas?
1 The molecules have negligible volume.
2 There are no forces of attraction between molecules.
3 The molecules have an average kinetic energy which is proportional to its absolute temperature.

Q11 When a sample of a gas is compressed at constant temperature from 1500 kPa to 6000 kPa , its volume changes from $76.0 \mathrm{~cm}_{3}$ to $20.5 \mathrm{~cm}_{3}$.
Which statements are possible explanations for this behaviour?
1 The gas behaves non-ideally.
2 The gas partially liquefies.
3 Gas is adsorbed on to the vessel walls.

Q12 Which equations apply to an ideal gas?
[$p=$ pressure, $\mathrm{V}=$ volume, $\mathrm{M}=$ molar mass, $\rho=$ density, $\mathrm{c}=$ concentration, $\mathrm{R}=$ gas
constant, $\mathrm{T}=$ temperature]
$1 \mathrm{p}=\frac{\rho \mathrm{RT}}{\mathrm{M}}$
$2 \mathrm{pV}=\mathrm{MRT}$
$3 \mathrm{pV}=\frac{\mathrm{cRT}}{\mathrm{M}}$

Q13 What are assumptions of the kinetic theory of gases and hence of the ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$?
1 Molecules move without interacting with one another except for collisions.
2 Intermolecular forces are negligible.
3 Intermolecular distances are much greater than the molecular size.

1. A
2. C
3. D
4. C
5. A
6. D
7. B
8. A
9. D
10. A
11. D
12. D
13. A

Q1 When used for cutting or welding, ethyne is transported in cylinders which contain the gas under pressure. A typical cylinder has a volume of $76 \mathrm{dm}^{3}$ and contains ethyne gas at 1515 kPa pressure at a temperature of $25^{\circ} \mathrm{C}$. Use the general gas equation, $p V=n R T$, to calculate the amount, in moles, of ethyne in this cylinder.

Q2 (a) At sea level and a temperature of $20^{\circ} \mathrm{C}$ an inflated bicycle tyre contains $710 \mathrm{~cm}^{3}$ of air at an internal pressure of $6 \times 10^{5} \mathrm{~Pa}$. Use the general gas equation $P V=n R T$ to calculate the amount, in moles, of air in the tyre at sea level.
(b)The same bicycle, with its tyres inflated at sea level as described in (a) above, is placed in the luggage hold of an airliner. At a height of 10000 m , the temperature in the luggage hold is $5^{\circ} \mathrm{C}$ and the air pressure is $2.8 \times 10^{4} \mathrm{~Pa}$.

Q3 The kinetic theory of gases is used to explain the large scale (macroscopic) properties of gases by considering how individual molecules behave.
(a) State two basic assumptions of the kinetic theory as applied to an ideal gas.
(i)
(ii)
(b) State two conditions under which the behaviour of a real gas approaches that of an ideal gas.
(i)
(ii) \qquad
(c) Place the following gases in decreasing order of ideal behaviour.

> ammonia, neon, nitrogen

Abstract

most ideal least ideal Explain your answer.

\qquad
(d) By using the kinetic-molecular model, explain why a liquid eventually becomes a gas as the temperature is increased.
\qquad
\qquad
\qquad
\qquad

Q4 CO_{2} does not behave as an ideal gas.
(a) State all the basic assumptions of the kinetic theory as applied to an ideal gas.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b)Suggest one reason why CO_{2} does not behave as an ideal gas.
\qquad

